Abstract

AbstractAvertical numerical model has been developed that simulates tank experiments of sediment entrainment into sea ice. Physical processes considered were: turbulent vertical diffusion of heat, salt, sediment, frazil ice and their aggregates; differential growth of frazil-ice crystals; secondary nucleation of crystals; and aggregation between sediment and ice. The model approximated the real size distribution of frazil ice and sediment using five classes of each. Frazil crystals (25 μm to 1.5 cm) were modelled as discs with a constant thickness of their diameter. Each class had a constant rise velocity based on the density of ice and drag forces. Sediment grains (1–600 μm) were modelled as constant density spheres, with corresponding sinking velocities. The vertical diffusion was set constant for experiments based on calculated turbulent rms velocities and dissipation rates from current data. The balance between the rise/sinking velocities and the constant vertical diffusion is an important feature of the model. The efficiency of the modeled entrainment process was estimated through α, an aggregation factor. Values for α are in the range 〈0.0003, 0.1〉, but average values are often close to 0.01. Entrainment increases with increasing sediment concentration and turbulence of the water, and heat flux to the air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.