Abstract

Despite the utility and promise of carbon nanotubes (CNTs), their production is generally based on empirical principles. There are only a few CNT formation models that predict the dependence of their growth on various synthesis parameters. Typically, these do not incorporate a detailed mechanistic consideration of the various processes that are involved during CNT synthesis. We address this need and present a model for catalytic CNT growth that integrates various interdependent physical and chemical processes involved in CNT production. We validate the model by comparing its predictions with one set of experimental measurements from a previous study for cobalt (Co) catalyzed growth. A brief parametric study is presented subsequently. From an application perspective, the model is able to predict the growth rate of the CNT length and its dependence on the ambient temperature and gas-phase feedstock partial pressure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.