Abstract

An accurate modelling of catalytic growth of carbon nanotubes (CNTs) is needed to model the physics of carbon adsorption and diffusion into the catalyst surface along with the catalyst deactivation. The model should be able to provide a physical response towards the change of temperature and partial pressure. Though the effects of temperature and partial pressure on the growth rate has been studied individually, the coupled effects of the two parameters has yet to be emphasized. A modified growth rate model that unified the terms from previously developed models successfully captured the essential physics during the growth and provided physical response towards the change of temperature and partial pressure. The model validation was done against a chemical vapour deposition (CVD) experiment that employed acetylene and cobalt as the carbon source and the catalyst respectively where the modified model managed to predict the CNT terminal length more accurately compared to the standard model with 5% maximum error. A comprehensive parametric study on the effects of temperature and partial pressure on the growth rate and terminal length successfully reveals the minimum partial pressure of 5 Torr for a given operating condition below which the growth rate is significantly low regardless of any increase of temperature. Three regions of growth in the partial pressure–temperature domain are identified based on the magnitude of terminal length. The model can serve as a guideline for the determination and optimisation of the baseline operating conditions in future experiments on catalytic growth of CNT, with emphasis on the CVD and flame synthesis techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.