Abstract
Computer controlled scanning electron microscopy (CCSEM) is a widely-used method for single airborne particle analysis. It produces extensive chemical and morphological data sets, whose processing and interpretation can be very time consuming. We propose an automated two-stage particle classification procedure based on elemental compositions of individual particles. A rule-based classifier is applied in the first stage to form the main classes consisting of particles containing the same elements. Only elements with concentrations above a threshold of 5 wt% are considered. In the second stage, data of each main class are isometrically log-ratio transformed and then clustered into subclasses, using a robust, model-based method. Single particles which are too far away from any more densely populated region are excluded during training, preventing these particles from distorting the definition of the sufficiently populated subclasses. The classifier was trained with over 55,000 single particles from 83 samples of manifold environments, resulting in 227 main classes and 465 subclasses in total. All these classes are checked manually by inspecting the ternary plot matrix of each main class. Regardless of the size of training data, some particles might belong to still undefined classes. Therefore, a classifier was chosen which can declare particles as unknown when they are too far away from all classes defined during training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.