Abstract

To facilitate the phenotypic characterization of Medicago truncatula, our aim was to provide a framework of analysis of flowering in response to environmental factors. The flowering of the line A17 was analysed in different conditions of temperature, duration of vernalization and photoperiod. Flowering was characterized using three descriptors at the axis level: the position of the first reproductive node (1RN), the date of beginning of flowering (DBF) and the florochron (RFa-1) corresponding to the reciprocal of the rate of progression of flowering along each axis. As for vegetative development, it was found that flowering could be analysed as a function of thermal time using a base temperature (Tb) of 5 degrees C. Vernalization displayed a sound impact on the flowering. For all the studied axes, increasing the duration of vernalization lowered the 1RN and hastened the DBF. By contrast, for most of the studied axes, RFa-1 was only slightly affected by vernalization. For the branch B0, RFa-1 was a genotypic constant when thermal time was used. Considering B0 as a reference axis, an ecophysiological model was developed to simulate the impact of environmental factors on the three components of flowering. Concrete practical applications of the model-based framework presented herein are proposed for helping the genetic and genomic studies of M. truncatula.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call