Abstract
BackgroundA vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. A pre-pandemic vaccine, although probably having lower efficacy, could be produced and used pre-emptively. While several previous studies have investigated the cost effectiveness of pre-emptive vaccination strategies, they have not been directly compared to realistic reactive vaccination strategies.MethodsAn individual-based simulation model of ~30,000 people was used to examine a pre-emptive vaccination strategy, assuming vaccination conducted prior to a pandemic using a low-efficacy vaccine. A reactive vaccination strategy, assuming a 6-month delay between pandemic emergence and availability of a high-efficacy vaccine, was also modelled. Social distancing and antiviral interventions were examined in combination with these alternative vaccination strategies. Moderate and severe pandemics were examined, based on estimates of transmissibility and clinical severity of the 1957 and 1918 pandemics respectively, and the cost effectiveness of each strategy was evaluated.ResultsProvided that a pre-pandemic vaccine achieved at least 30% efficacy, pre-emptive vaccination strategies were found to be more cost effective when compared to reactive vaccination strategies. Reactive vaccination coupled with sustained social distancing and antiviral interventions was found to be as effective at saving lives as pre-emptive vaccination coupled with limited duration social distancing and antiviral use, with both strategies saving approximately 420 life-years per 10,000 population for a moderate pandemic with a basic reproduction number of 1.9 and case fatality rate of 0.25%. Reactive vaccination was however more costly due to larger productivity losses incurred by sustained social distancing, costing $8 million per 10,000 population ($19,074/LYS) versus $6.8 million per 10,000 population ($15,897/LYS) for a pre-emptive vaccination strategy. Similar trends were observed for severe pandemics.ConclusionsCompared to reactive vaccination, pre-emptive strategies would be more effective and more cost effective, conditional on the pre-pandemic vaccine being able to achieve a certain level of coverage and efficacy. Reactive vaccination strategies exist which are as effective at mortality reduction as pre-emptive strategies, though they are less cost effective.
Highlights
A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic
The Albany simulation model used in this study has been used previously in a series of studies addressing the effectiveness and cost effectiveness of various public health pandemic influenza mitigation measures, including the cost effectiveness of reactive vaccination strategies with respect to the delay in vaccine development [15], the economic evaluation and cost effectiveness analysis of social distancing and antiviral drug strategies that were used during the 2009 H1N1 pandemic [39], combinations of antiviral and different social distancing interventions for the future pandemics with mild, moderate and severe characteristics [15,40,41], and the effectiveness of vaccination with pre-pandemic H5N1 vaccines [28]
Key findings Assuming that an influenza pandemic occurs every 30 years on average, and that pre-pandemic vaccines are at least 30% effective, a pre-emptive vaccination strategy is more effective, less costly, and more cost effective in terms of cost per life year saved than a reactive vaccination strategy, for all severities and combinations of interventions simulated in this study
Summary
A vaccine matched to a newly emerged pandemic influenza virus would require a production time of at least 6 months with current proven techniques, and so could only be used reactively after the peak of the pandemic. Avian influenza subtypes such as H5N1 and H7N9 have begun circulating in domestic bird populations in South-East Asia and China These subtypes result in high case fatality rates in humans who have contracted influenza from infected birds, having an estimated CFR in patients admitted to hospital of between 30% and 70% [5,6,7,8,9,10]. This may lead to a major public health disaster if such a virus mutates or reassorts into a form transmissible between humans. Recent research studies highlighted the danger of H5N1 mutation into a form readily transmissible between mammal species, namely ferrets [11,12,13], demonstrating potential transmissibility between humans
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have