Abstract

Many early vision tasks require only 6 to 8 b of precision. For these applications, a special-purpose analog circuit is often a smaller, faster, and lower power solution than a general-purpose digital processor, but the analog chips lack the programmability of digital image processors. This paper presents a programmable mixed-signal array processor which combines the programmability of a digital processor with the small area and low power of an analog circuit. Each processor cell in the array utilizes a digitally programmable analog arithmetic unit with an accuracy of 1.3%. The analog arithmetic unit utilizes a unique circuit that combines a cyclic switched-capacitor analog-to-digital converter (ADC) and digital-to-analog converter (DAC) to perform addition, subtraction, multiplication, and division, Each processor cell, fabricated in a 0.8-/spl mu/m triple-metal CMOS process, operates at a speed of 0.8 MIPS, consumes 1.8 mW of power at 5 V, and uses 700 /spl mu/m by 270 /spl mu/m of silicon area. An array of these processor cells performed an edge detection algorithm and a subpixel resolution algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.