Abstract

A discrete event system, is a dynamical system whose state evolves in time by the occurrence of events at possibly irregular time intervals. Place-transitions Petri nets (commonly called Petri nets) are a graphical and mathematical modeling tool applicable to discrete event systems in order to represent its states evolution. Timed Petri nets are an extension of Petri nets that model discrete event systems where now the timing at which the state changes is taken into consideration. One of the most important performance issues to be considered in a discrete event dynamical system is its stability. Lyapunov stability theory provides the required tools needed to aboard the stability problem for discrete event systems modeled with timed petri nets whose mathematical model is given in terms of difference equations. By proving practical stability one is allowed to preassigned the bound on the discrete event systems dynamics performance. Moreover, employing Lyapunov methods, a sufficient condition for the stabilization problem is also obtained. It is shown that it is possible to restrict the discrete event systems state space in such a way that boundedness is guaranteed. However, this restriction results to be vague. This inconvenience is overcome by considering a specific recurrence equation, in the max-plus algebra, which is assigned to the timed Petri net graphical model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.