Abstract

Research in psychology has seen a rapid increase in the usage of experience sampling methods and daily diary methods. The data that result from using these methods are typically analyzed with a mixed-effects or a multilevel model because it allows testing hypotheses about the time course of the longitudinally assessed variable or the influence of time-varying predictors in a simple way. Here, we describe an extension of this model that does not only allow to include random effects for the mean structure but also for the residual variance, for the parameter of an autoregressive process of order 1 and/or the parameter of a moving average process of order 1. After we have introduced this extension, we show how to estimate the parameters with maximum likelihood. Because the likelihood function contains complex integrals, we suggest using adaptive Gauss-Hermite quadrature and Quasi-Monte Carlo integration to approximate it. We illustrate the models using a real data example and also report the results of a small simulation study in which the two integral approximation methods are compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.