Abstract

As the size and complexity of a network increases, the probability of a dual link failure also increases. For recovering the dual link failures, two strategies have been presented in past. As per the first strategy, SPP-MAS (Shared Path Protection-Maximum Allowable Sharing), the sharing of backup lightpaths in SPP (Shared Path Protection) has been reduced, and in the second strategy TBPS (Two Backup Path Shared), the reservation of two backup lightpaths for each primary lightpath has been undertaken. The main flaw of these strategies is the requirement of redundant network resources towards the establishment of backup lightpaths, and the occurrence of trap problem after the second link fails. To minimize the redundant backup resources and the trap problem, a mixed connection recovery algorithm namely Adaptive Backup Routing over Reserved Resources (ABRRR) has been proposed. The design of ABRRR takes leverage of both, the pre-planned, and the post-failure connection recovery mechanisms. In ABRRR, the failed connections are re-provisioned adaptively over the pre-allocated backup network resources. Adaptive re-provisioning of the failed connection minimizes the trap problem. Using simulation experiments, we undertake a comparative study of the proposed strategy with the existing strategies (i.e. SPP-MAS and TBPS) under the network parameters of Blocking Probability, Dual Restorability, and Resource Utilization Ratio (RUR). Detailed investigations establish that the use of ABRRR leads to lower Blocking Probability, higher Dual Restorability, and minimized RUR compared to the existing strategies. Results also show that the proposed strategy not only survives more connections but also utilizes fewer numbers of resources compared to the existing strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call