Abstract
Network survivability is a crucial requirement in WDM mesh networks. In this paper, we systematically consider the problem of dynamic survivability with dynamic single link failure in WDM networks under dynamic traffic demands. Specifically, we investigate various protection schemes, such as dedicated path protection (DPP), shared path protection (SPP), dedicated link protection (DLP), shared link protection (SLP), and two restoration schemes, path restoration (PR) and link restoration (LR). Moreover, two new shared protection methods are proposed, i.e., SRLG-based shared link protection (SRLG-SLP) and SRLG-based shared path protection (SRLG-SPP). The SRLG (shared risk link group) constraint defines the availability of protection resources to a working path, which requires that any two working paths sharing the same risk of failure (or in the same SRLG) cannot share the same protection resources. Furthermore, in our study, we consider a more practical dynamic single-link failure model, in which the link-failure-interarrival time and link-failure-holding time are considered as two independent parameters. Based on this link-failure model, extensive simulations are done to analyze and compare the dynamic survivable performance of various protection and restoration schemes. Resource utilization, protection efficiency, restoration efficiency, and service disruption ratio are employed as survivable performance metrics versus traffic load, link-failure frequency, and link-failure reparation time to evaluate the survivable performance. Many meaningful results are given. In addition, we show that the developed SRLG-SLP and SRLG-SPP protection schemes perform very well in terms of protection efficiency and service disruption ratio, while sacrificing some performance in terms of resource utilization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.