Abstract

Considered is the construction of transition paths of conformational changes for proteins and other macromolecules, using methods that do not require the generation of dynamics trajectories. Special attention is given to the use of a reduced set of collective variables for describing such paths. A favored way to define transition paths is to seek channels through the transition state having cross sections with a high reactive flux (density of last hitting points of reactive trajectories). Given here is a formula for reactive flux that is independent of the parameterization of "collective variable space." This formula is needed for the principal curve of the reactive flux (as in the revised finite temperature string method) and for the maximum flux transition (MaxFlux) path. Additionally, a resistance functional is derived for narrow tubes, which when minimized yields a MaxFlux path. A strategy for minimization is outlined in the spirit of the string method. Finally, alternative approaches based on determining trajectories of high probability are considered, and it is observed that they yield paths that depend on the parameterization of collective variable space, except in the case of zero temperature, where such a path coincides with a MaxFlux path.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.