Abstract
We study an extension of the Standard Model featuring a hidden sector that consists of a new scalar charged under a new SU$(N)_D$ gauge group, singlet under all Standard Model gauge interactions, and coupled with the Standard Model only via a Higgs portal. We assume that the theory is classically conformal, with electroweak symmetry breaking dynamically induced via the Coleman-Weinberg mechanism operating in the hidden sector. Due to the symmetry breaking pattern, the SU$(N)_D$ gauge group is completely Higgsed and the resulting massive vectors of the hidden sector constitute a stable dark matter candidate. We perform a thorough scan over the parameter space of the model at different values of $N=2$, $3$, and $4$, and investigate the phenomenological constraints. We find that $N=2,3$ provide the most appealing model setting in light of present data from colliders and dark matter direct search experiments. We expect a heavy Higgs to be discovered at LHC by the end of Run II or the $N=3$ model to be ruled out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.