Abstract

A miniaturized internal antenna with monopole structure is constituted, including three radiating strips of a compact prototype and a back-coupling pad to improve the impedance matching, which achieves a wide bandwidth of 2.972 GHz between the operating frequencies of 2315–5285 MHz, and is introduced and researched. There is an urgent need for a complete frequency-continuous and large bandwidth design in the current wireless communication design to achieve a multimode, multifrequency, physical phenomenon design with large bandwidth and continuous operating frequency. The recommended antenna provides a broadband operation in an electric vehicles (EVs) and Internet of Things (IoT) devices application embedded in the wireless communication standard for 5G, LTE, V2X, WLAN, WiMAX, Sirius/XM Radio, V2X, and DSRC to support the multiband application. This design is embedded side edge of overall placement in the device and is integrated applicable to the trend of heterogeneous wireless multiple access networks in electric vehicle and Internet of Things system devices, which covered the 5G with supporting the band of n7/n38/n40/n53/n77/n78/n79/n90, the 4G with supporting the band of 7/38/40/41/42/43/48/67, the V2X and DSRC for the operating frequencies between 2500 and 5000 MHz, the Sirius/XM Radio for the operating frequencies of 2320–2345 MHz, the ISM band of WiFi and BT covering the band of 2450–2483.5 and 5150–5350 MHz, and the WiMAX also supporting the band of 2300–2690 and 3400–3690 MHz. Moreover, the compact antenna manufactured an FR4 material with the antenna area of 5 × 10 × 0.8 mm3 and the ground area of 33.5 × 10 × 0.8 mm3. The proposed design better benefits a narrow space on the PCB with a low profile and is easy to make with a circuit board design.

Highlights

  • To welcome the 5th generation mobile network communication era’s arrival, all industries are facing innovation and upgrading and undoubtedly need to use 5G technology to promote industrial development [1]

  • The system ground with a rectangular slot can contribute to the resonance frequency during 2350 MHz and 2450 MHz. erefore, the proposed antenna layout position of the edge side is suitable for the wireless communication technology standard with the fourth-generation (5G), Long-Term Evolution (LTE), Wireless LAN (WLAN), Worldwide Interoperability for Microwave Access (WiMAX), Sirius/XM Radio, dedicated short-range communication (DSRC), and the vehicle-to-everything (V2X) communication systems. e miniaturized planar monopole antenna is studied by an electromagnetic simulator and analyzed the antenna related performance of electrical and radiative properties

  • The overall analysis is obtained by a full-wave electromagnetic simulator. e return loss performance of this prototype was evaluated and verified by Agilent E5071C using a vector network analyzer. e impedance bandwidths of simulated and measured are defined by 3 : 1 VSWR, which is extensively adopted for the specification of embedded WWAN antenna design and meets the 3GPP wireless system requirement composed of RF active circuits

Read more

Summary

Introduction

To welcome the 5th generation mobile network communication era’s arrival, all industries are facing innovation and upgrading and undoubtedly need to use 5G technology to promote industrial development [1]. E proposed study of the planar monopole antenna with stabilizing radiation patterns is apposite for mobile and fixed IoT devices that integrate multiple heterogeneous access networks, for example, electric vehicle applications for 5G, LTE, WLAN, WiMAX, Sirius/XM Radio, V2X, and DSRC communication systems.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.