Abstract

The detection of force with higher resolution than observed in humans (~1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm2), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with $200~\mu \text{m}$ diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of $630~\mu \text{N}$ . A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and $162~\mu \text{m}$ root mean square surface roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.