Abstract

In this paper, statistical models were developed to investigate effect of cutting parameters on surface roughness and root mean square of work piece vibration in boring of stainless steel. A mixed level design of experiments was prepared with process variables of nose radius, cutting speed and feed rate. According to design of experiments, eighteen experiments were conducted on AISI 316 stainless steel with PVD coated carbide tools. Surface roughness, tool wear and vibration of work piece were measured in each experiment. A laser Doppler vibrometer was used to measure vibration of work piece in the form of acousto optic emission signals. These signals were processed and transformed in to different frequency zones using a fast Fourier transformer. Analysis of variance was used to identify significant cutting parameters on surface roughness and root mean square of work piece vibration. Predictive models like response surface methodology, artificial neural network and support vector machine were used to predict the surface roughness and root mean square of work piece vibration. Cutting parameters were optimized for minimum surface roughness and root mean square of work piece vibration using a multi response optimization technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.