Abstract
A microwave photonic link (MPL) with high spurious-free dynamic range (SFDR) is proposed and analyzed. The optical carrier is divided equally into two paths. The path 1 is modulated by radio frequency (RF) signals in a Mach-Zehnder modulator (MZM), and the phase of path 2 is controlled before the combination with path 1. By properly adjusting the phase difference of the two paths with the optical phase shifter, the third-order intermodulation distortion (IMD3) can be significantly suppressed. A proof-of-concept simulation is carried out. The results show that a reduction of 40 dB in the IMD3 and an improvement of 21.1 dB in the SFDR are achieved as compared with the conventional MZM-based MPL. The proposed MPL shows the advantages of simple structure, low cost and high efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.