Abstract
The eyespot apparatus of the unicellular alga Chlamydomonas exhibits a clear directivity, i.e., it perceives light from different directions with different sensitivity. Using a newly constructed confocal microscope we have studied how absorption and reflection of eyespot and cell body shape this directivity. In agreement with previous results the eyespot was found to be highly reflectant, owing to its interference reflector design, but only for yellow light. Light of 490 nm, the maximum of absorption of the photoreceptor, was hardly reflected at all, even when the reflector was "tuned" to lower wavelengths by tilting it relative to the incoming light. The absorption of the carotenoids in the interference reflector also contributed little to the shielding properties of the cell, leaving the major contribution to the cell body. Thus most of the attenuation of light reaching the eyespot from the rear is due to chlorophyll and other pigments within the cell. In its peak around 490 nm the "contrast-ratio" reached a value of 8-10.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.