Abstract
A novel three-dimensional microporous metal-organic framework Zn(4)L(DMA)(4) (UTSA-33, H(8) L=1,2,4,5-tetra(5-isophthalic acid)benzene, DMA=N,N'-dimethylacetamide) with small pores of about 4.8 to 6.5 Å was synthesized and structurally characterized as a non-interpenetrated (4,8)-connected network with the flu topology (Schläfli symbol: (4(12)6(12)8(4))(4(6))(2)). The activated UTSA-33a exhibits highly selective separation of acetylene, ethylene, and ethane from methane with the adsorption selectivities of 12 to 20 at 296 K, which has been established exclusively by the sorption isotherms and simulated breakthrough experiments, thus methane can be readily separated from their binary and even ternary mixtures at room temperature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.