Abstract

Microfluidic paper-based analytical devices (μPADs) represent a promising platform technology for point-of-care diagnosis. Highly sensitive, rapid, and easy-to-perform immunoassays implemented on μPADs are desirable to fulfill the promise of the μPAD technology. This article reports the first microfluidic paper-based origami nanobiosensor (origami μPAD), which integrates zinc oxide nanowires (ZnO NWs) and electrochemical impedance spectroscopy (EIS) biosensing mechanism, for label-free, ultrasensitive immunoassays. The EIS mechanism features simple and label-free assay operations which take less than 25 min to be finished, while the ZnO NWs allow covalent bonding for immobilizing probe proteins and improve the biosensing performance with such features as high surface-area-to-volume ratios and high sensitivity to surface binding. The calibration of the device reveals an ultralow limit of detection (LOD) of 60 fg mL(-1) (>100 times lower than those of existing μPADs) for rabbit immunoglobulin G in phosphate-buffered saline. The detection of human immunodeficiency virus p24 antigen in human serum with a low LOD of 300 fg mL(-1) (>33 times lower than that of a commercial p24 antigen test kit) is also demonstrated. This novel μPAD design offers ultrahigh sensitivity, short assay time, and ease of operation, and thus possesses significant potential for low-cost, rapid molecular diagnosis of early-stage diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.