Abstract

Clinical viscoelastic hemostatic assays, which have been used for decades, rely on measuring biomechanical responses to physical stimuli but face challenges related to high device and test cost, limited portability, and limited scalability.. Here, we report a differential pattern using self-induced adaptive-bubble behavioral perception to refresh it. The adaptive behaviors of bubble deformation during coagulation precisely describe the transformation of viscoelastic hemostatic properties, being free of the precise and complex physical devices. And the integrated bubble array chip allows microassays and enables multi-bubble tests with good reproducibility. Recognition of the developed bubble behaviors empowers automated and user-friendly diagnosis. In a prospective clinical study (clinical model development [n= 273]; clinical assay [n= 44]), we show that the diagnostic accuracies were 99.1% for key viscoelastic hemostatic assay indicators (reaction time [R], kinetics time [K], alpha angle [Angle], maximum amplitude [MA], lysis at 30min [LY30]; n= 220) and 100% (n= 44) for hypercoagulation, healthy, and hypocoagulation diagnoses. This should provide fresh insight into existing paradigms and help more clinical needs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.