Abstract
A three-dimensional microfluidic chip that combines sample manipulation and SERS detection on-chip was developed. This was successfully achieved by chip integration of a nanoporous polycarbonate track-etched (PCTE) membrane which connects microfluidic channels on two different levels with each other. The membrane fulfills two functions at the same time. On the one hand, it enables sample enrichment by selective electrokinetic transport processes through the membrane. On the other hand, the silver nanoparticle-coated backside of the same membrane enables SERS detection of the enriched analytes. The SERS substrate performance and the electrokinetic transport phenomena were studied using Rhodamine B (RhB) by Raman microscopy and fluorescence video microscopy. After system validation, the approach was attested by on-chip processing of a complex food sample. In a proof-of-concept study, the microfluidic device with the SERS substrate membrane was used to detect a concentration of 1 ppm melamine (705 cm-1) in whole milk. Electrokinetic transport across the nanoporous SERS substrate facilitates the extraction of analyte molecules from a sample channel into a detection channel via a potential gradient, thus easily removing obscuring compounds present in the sample matrix. The SERS signal of the analyte could be significantly increased by on-target sample drying. This was achieved by guiding an additional gas flow over the membrane which further extends the microfluidic functionality of the chip device. The proposed method possesses the advantages of combining a rapid (within 15 min) sample clean-up using electrokinetic transport in a three-dimensional microfluidic device which is highly suitable for sensitive and selective SERS detection of chemical and biological analytes. Graphical Abstract.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have