Abstract
Microfluidic chips can perform a broad range of automated fluid manipulation operations for chemical analysis including on-line reactions. Derivatization reactions carried out on-chip reduce manual sample preparation and improve experimental throughput. In this work we develop a chip for on-line benzoyl chloride derivatization coupled to microdialysis, an in vivo sampling technique. Benzoyl chloride derivatization is useful for the analysis of small molecule neurochemicals in complex biological matrices using HPLC-MS/MS. The addition of one or more benzoyl groups to small, polar compounds containing amines, phenols, thiols, and certain alcohols improves reversed phase chromatographic retention, electrospray ionization efficiency, and analyte stability. The current derivatization protocol requires a three-step manual sample preparation, which ultimately limits the utility of this method for rapid sample collection and large sample sets. A glass microfluidic chip was developed for derivatizing microdialysis fractions on-line as they exit the probe for collection and off-line analysis with HPLC-MS/MS. Calibration curves for 21 neurochemicals prepared using the on-chip method showed linearity (R2 > 0.99), limits of detection (0.1-500 nM), and peak area RSDs (4-14%) comparable to manual derivatization. Method temporal resolution was investigated both in vitro and in vivo showing rapid rise times for all analytes, which was limited by fraction length (3 min) rather than the device. The platform was applied to basal measurements in the striatum of awake rats where 19 of 21 neurochemicals were above the limit of detection. For a typical 2 h study, a minimum of 120 pipetting steps are eliminated per animal. Such a device provides a useful tool for the analysis of small molecules in biological matrices which may extend beyond microdialysis to other sampling techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.