Abstract

Mets motifs, which refer to methionine-rich sequences found in the high-affinity copper transporter Ctr1, also appear in other proteins involved in copper trafficking and homeostasis, including other Ctrs as well as Pco and Cop proteins isolated from copper-resistant bacteria. To understand the coordination chemistry utilized by these proteins, we studied the copper binding properties of a peptide labeled Mets7-PcoC with the sequence Met-Thr-Gly-Met-Lys-Gly-Met-Ser. By comparing this sequence to a series of mutants containing noncoordinating norleucine in place of methionine, we confirm that all three methionine residues are involved in a thioether-only binding site that is selective for Cu(I). Two independent methods, one based on mass spectrometry and one based on rate differences for the copper-catalyzed oxidation of ascorbic acid, provide an effective K(D) of approximately 2.5 microM at pH 4.5 for the 1:1 complex of Mets7-PcoC with Cu(I). These results establish that a relatively simple peptide containing an MX(2)MX(2)M motif is sufficient to bind Cu(I) with an affinity that corresponds well with its proposed biological function of extracellular copper acquisition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call