Abstract

A metrological characterization process for time-of-flight (TOF) cameras is proposed in this paper and applied to the Microsoft Kinect V2. Based on the Guide to the Expression of Uncertainty in Measurement (GUM), the uncertainty of a three-dimensional (3D) scene reconstruction is analysed. In particular, the random and the systematic components of the uncertainty are evaluated for the single sensor pixel and for the complete depth camera. The manufacturer declares an uncertainty in the measurement of the central pixel of the sensor of about few millimetres (Kinect for Windows Features, 2015), which is considerably better than the first version of the Microsoft Kinect (Chow et al., 2012 [1]). This work points out that performances are highly influenced by measuring conditions and environmental parameters of the scene; actually the 3D point reconstruction uncertainty can vary from 1.5 to tens of millimetres.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.