Abstract

Opportunistic routing is widely known to have substantially better performance than traditional unicast routing in wireless networks with lossy links. However, wireless sensor networks are heavily duty-cycled, i.e. they frequently enter deep sleep states to ensure long network life-time. This renders existing opportunistic routing schemes impractical, as they assume that nodes are always awake and can overhear other transmissions. In this paper, we introduce a novel opportunistic routing metric that takes duty cycling into account. By analytical performance modeling and simulations, we show that our routing scheme results in significantly reduced delay and improved energy efficiency compared to traditional unicast routing. The method is based on a new metric, EDC, that reflects the expected number of duty cycled wakeups that are required to successfully deliver a packet from source to destination. We devise distributed algorithms that find the EDC-optimal forwarding, i.e. the optimal subset of neighbors that each node should permit to forward its packets. We compare the performance of the new routing with ETX-optimal single path routing in both simulations and testbed-based experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.