Abstract
Drilling and blasting is the conventional method used for rock fragmentation in open pit mining. Blast-induced damage can reduce the level of stability of benches and pit slopes. To develop an optimal blast design, an adequate knowledge of the rock properties and in situ fractures is needed. Fractures are generally the paths of least resistance for explosive energy and can affect the intensity of blast-induced damage. Discrete Fracture Networks (DFNs) are 3D representations of joint systems used for estimating the distribution of in situ fractures in a rock mass. The combined finite/discrete element method (FDEM) can be used to simulate the complex rock breakage process during a blast. The objective of this paper is to develop a methodology for assessing the influence of in situ joints on post-blast fracturing and the associated wall damage in 2D bench blast scenarios. First, a simple one-blasthole scenario is analyzed with the FDEM software Irazu 2D and calibrated based on a laboratory-scale blasting experiment available from previous literature. Secondly, more complex scenarios consisting of one-blasthole models at the bench scale were simulated. A bench blast without DFN (base case) and one with DFN were numerically simulated. The model with DFN demonstrated that the growth path and intensity of blast-induced fractures were governed by pre-existing fractures, which led to a smaller wall damage area. The damage intensity for the base case scenario is about 82% higher than for the blast model with DFN included, which highlights the significance of in situ fractures in the resulting blast damage intensity. The methodology for developing the DFN-included blasting simulation provides a more realistic modeling process for blast-induced wall damage assessment. This results in a better characterization of the blast damage zone and can lead to improved slope stability analyses.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have