Abstract

Pediatric hemiplegia, caused by a unilateral brain injury during childhood, can lead to motor deficits such as weakness and abnormal joint torque coupling patterns which may result in a loss of independent joint control. It is hypothesized that these motor impairments are present in the paretic lower extremity, especially at the hip joint where extension may be abnormally coupled with adduction. Previous studies investigating lower extremity isometric joint torques in children with spastic cerebral palsy used tools that limited data collection to one degree of freedom, making it impossible to quantify these coupling patterns. We describe the adaptation of a multi-joint lower extremity isometric torque measurement device to allow for quantification of weakness and abnormal joint torque coupling patterns at the hip in the pediatric population. We also present preliminary data in three children without hemiplegia to highlight how the presence of atypical femoral bony geometry, often observed in childhood hemiplegia, can be accounted for in the Jacobian transformations and affect joint torque measurements at the hip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.