Abstract
The purpose of this work is to find a method to locate the scattering centers in spatial domain; by using this information, the mean scatter spacing (MSS) can be estimated, and the spatial information is the one-dimensional imaging of scattering centers. This paper presents a method that can locate the scattering centers in spatial domain robustly and automatically. By incorporating it with fast Fourier transformation, the MSS can be estimated. The three foremost processes, matched filtering, envelope extraction, and peak reconstruction, are incorporated in the authors' algorithm. Monte Carlo simulations demonstrate that the proposed method is a robust one to locate scattering centers in spatial domain, and has a better performance than spectrum-based MSS estimation techniques. Especially exploited in estimating MSS which varies from 0.6 to 1.2 mm in the range of human mean trabecular bone spacing, the proposed method shows great potential in medical use. Simple but widely used phantom experiments demonstrate that the proposed algorithm has the capacity to locate scattering centers in spatial domain.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have