Abstract

We describe an innovative and tested approach combining two individually potent techniques to visualize simultaneously the functional impact of multiple projections on target populations of neurons in the brain. The rationale is simple: silence a defined set of efferent projections from one cortical region using cooling deactivation and then measure the impact of the deactivation on activities in multiple target regions using 2-deoxyglucose (2DG). This is a straightforward and sound approach because 2DG uptake by neurons reflects levels of underlying neural activity. All distant modifications evoked by the silencing of the set of efferent projections are examined in anatomical tissue and simultaneously for the multiple target sites to provide a global view of the functional impacts of the set of projections on the targets. With this method, downward adjustments of 2DG uptake levels identify removals of net excitatory signals, whereas upward adjustments identify net removals of suppressive influences. Future possible uses and modifications of the technique, including optical imaging, are discussed. Overall, the technique has the potential to provide fundamental, new measures on cerebral network interactions that both complement and extend current static models of cerebral networks and electrophysiological measures of functional impacts on individual neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.