Abstract
The article considers a method of economical speed control of synchronous motor with permanent magnet excitation using autonomous voltage inverter. The method provides stable (without tilting) rotation of the rotor without using the rotor position sensor signals. An algorithm, which realizes minimal losses in the machine and in the inverter, is proposed.
 
 The assumption of insignificant influence of voltage drop in stator winding active resistance on processes in synchronous machine accepted in the analysis is confirmed by parameters of real motors from 7DVM series and results of the experiment. It is shown that the mode with cosφ = 1 differs little from the generally accepted mode with load angle θ = φ. The results of experimental verification of the method in electric drive with 7DVM250 motor of 150 kW power are presented, which showed high dynamic stability of the system in a wide range of speeds and loads and while maintaining the most economical energy exchange between the motor and inverter (that is with cosφ = 1).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.