Abstract

Abstract. An in-depth understanding of the nature of the available terrain and its exposure to avalanche hazard is crucial for making informed risk management decisions when travelling in the backcountry. While the Avalanche Terrain Exposure Scale (ATES) is broadly used for providing recreationists with terrain information, this type of terrain classification has so far only seen limited adoption within the professional ski guiding community. We hypothesize that it is the generic nature and small number of terrain classes of ATES and its precursor systems that prevent them from offering meaningful assistance to professional decision makers. Working with two mechanized skiing operations in British Columbia, Canada, we present a new approach for deriving terrain classifications from daily terrain assessment records. We used a combination of self-organizing maps and hierarchical clustering to identify groups of ski runs that have been assessed similarly in the past and organized them into operation-specific ski run hierarchies. We then examined the nature of the emerging ski run hierarchies using comprehensive run characterizations from experienced guides. Our approach produces high-resolution ski run hierarchies that offer a more nuanced and meaningful perspective on the available skiing terrain and provide new opportunities for examining professional avalanche risk management practices and developing meaningful decision aids.

Highlights

  • Commercial mechanized backcountry skiing is a type of downhill skiing in which guided groups use helicopters or snowcats to access remote and pristine skiing terrain that would otherwise be difficult to access

  • While earlier studies exploring the terrain management expertise of mountain guides at the run scale were confined to hypothetical decision situations (Grimsdottir, 2004; Haegeli, 2010b), we present a flexible approach for identifying patterns in actual risk management decisions

  • Since a meaningful representation of terrain is critical for properly linking backcountry terrain decisions to avalanche hazard and weather conditions, the operation-specific ski run classes identified in our study provide an exciting opportunity for exploring this link

Read more

Summary

Introduction

Commercial mechanized backcountry skiing is a type of downhill skiing in which guided groups use helicopters or snowcats to access remote and pristine skiing terrain that would otherwise be difficult to access. Since its inception in the late 1960s, the Canadian mechanized skiing industry has provided roughly 3 million skier days in total (Ian Tomm, HeliCat Canada, personal communication, 2017; Walcher et al, 2019). Walcher et al (2019) documented that between 1970 and 2016, the Canadian mechanized skiing industry experienced a total of 81 avalanche fatalities in 44 accidents involving both guides and guests. During the last 2 decades (1997–2016), the risk of accidentally dying in an avalanche was calculated as 14.4 micromorts (number of deaths per million skier days), which represents 77 % of the overall mortality in mechanized skiing in Canada due to natural hazards during that period (Walcher et al, 2019)

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call