Abstract

AbstractThe surface radiation budget of a groomed ski run is important to ski racing. Variables such as snow-surface temperature and liquid water content depend upon the surface radiation budget and are crucial to preparing fast skis. This case study focuses on downwelling longwave radiation, measurements of which were made at a point on a ski run on Whistler Mountain, British Columbia, Canada, throughout a 5-day clear-sky intensive observation period. Tall trees often dominate the horizon of a point on a ski run, and so contributions to total downwelling longwave radiation from trees and sky were treated separately. The “LWRAD” longwave radiative flux model estimated the total downwelling longwave radiation by first calculating thermal contributions from the trees, incorporating regressions for tree temperature that use routine meteorological measurements. Contributions from each azimuth direction were determined with horizon-elevation angles from a theodolite survey. Thermal emissions were weighted accordingly and summed. Sky contributions were estimated using the “libRadtran” radiative transfer model with input of local atmospheric profiles of temperature and humidity and were added to tree emissions. Two clear-sky emissivity parameterizations using screen-height measurements were tested for comparison. LWRAD total downwelling longwave radiation varies between 235 and 265 W m−2 and compares well to measurements, with correlation coefficient squared (r2) of 0.96. These results can be used to improve estimates of downwelling longwave radiation for a groomed ski run.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.