Abstract
Clustering ensemble algorithm is an effective way to improve the accuracy, stability and robustness of clustering results. It can get better results by fusing multiple homogenous or heterogeneous base clustering models. In this paper a clustering ensemble algorithm based on grey relation analysis is proposed. Through constructing a grey-linked matrix, the relationship between the data objects and all clusters can be connected, then the basic clustering results can be integrated. After that the appropriate consensus function is used to get the integrated clustering results by partitioning the matrix finally. In contrast to other clustering ensemble models, the proposed algorithm has higher accuracy and gets better stability and robustness after validating on several datasets from UCI. Moreover, the proposed algorithm can effectively avoid the category labels’ matching problem that’s in traditional clustering ensemble algorithms, so the clustering performance has been greatly improved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.