Abstract

Geometric calibration of ultrasound transducer arrays is critical to optimizing the performance of photoacoustic computed tomography (PACT) systems. We present a geometric calibration method that is applicable to a wide range of PACT systems. We obtain the speed of sound and point source locations using surrogate methods, which results in a linear problem in the transducer coordinates. We characterize the estimation error, which informs our choice of the point source arrangement. We demonstrate our method in a three-dimensional PACT system and show that our method improves the contrast-to-noise ratio, the size, and the spread of point source reconstructions by 80±19%, 19±3%, and 7±1%, respectively. We reconstruct the images of a healthy human breast before and after calibration and find that the calibrated image reveals vasculatures that were previously invisible. Our work introduces a method for geometric calibration in PACT and paves the way for improving PACT image quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.