Abstract

A general method for text localization and recognition in real-world images is presented. The proposed method is novel, as it (i) departs from a strict feed-forward pipeline and replaces it by a hypotheses-verification framework simultaneously processing multiple text line hypotheses, (ii) uses synthetic fonts to train the algorithm eliminating the need for time-consuming acquisition and labeling of real-world training data and (iii) exploits Maximally Stable Extremal Regions (MSERs) which provides robustness to geometric and illumination conditions. The performance of the method is evaluated on two standard datasets. On the Char74k dataset, a recognition rate of 72% is achieved, 18% higher than the state-of-the-art. The paper is first to report both text detection and recognition results on the standard and rather challenging ICDAR 2003 dataset. The text localization works for number of alphabets and the method is easily adapted to recognition of other scripts, e.g. cyrillics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.