Abstract
The necessity for technical-economic analysis of solar energy systems is obvious when assessing their feasibility vis-á-vis conventional alternative systems. Optimum magnitudes of the installation parameters should be defined under the required economic conditions. In this study, the optimization procedure was chosen so as to maximize the total accumulated saving throughout the economic lifetime of the system. The annual solar heating fraction of the system is assessed using the f-chart method which can be used for both domestic hot water and space heating. The saving produced by investing in a solar installation is obtained by taking the difference between the total discounted expenditures of the conventional and the solar systems, accumulated during their foreseen lifetimes. To this end, the present value method is applied, taking into account the initial investment costs, fuel costs, operation costs and the maintenance costs for both the solar system and its conventional alternative. Based on this technical-economic analysis, a computer program is developed. This accepts three types of input data: technical design, economic parameters and meteorological conditions, and calculates the optimum magnitudes of the design parameters. It is concluded that economic parameters are much more influential on the system economics than the technical parameters. The most significant are the payback period and the internal rate of return.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have