Abstract
During the last decades it has been shown that the Atomic Force Microscope (AFM) can be used in non-contact mode as an efficient lithographic technique capable of manufacturing nanometer sized devices on the surface of a silicon wafer. The AFM nanooxidation approach is based on generating a potential difference between a cantilever needle tip and a silicon wafer. A water meniscus builds up between the tip and the wafer, resulting in a medium for oxyions to move due to the high electric field in the region. A simulator for nanooxidation with a non-contact AFM, implemented in a Level Set environment, was developed. The presented simulator implements the growth of thicker oxides by analyzing the potential, electric field, and ion concentrations at the ambient/oxide and oxide/silicon interfaces, while the growth of thin oxides assumes a single liquid/silicon interface, which is modeled as an infinitely long conducting plane. The nanodot shapes have been shown to follow the electric field and hence the surface charge distribution shape; therefore, a Monte Carlo particle distribution for the surface charge density is generated for two-dimensional and three-dimensional topography simulations in a Level Set framework.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have