Abstract

Forward modeling plays a key role in both the creation of predictive models and the study of the surrounding environment through inversion methods. Due to their competitive computational cost and modest algorithmic complexity, finite difference methods (FDM) are commonly used to model the acoustic wave equation. An algorithm has been developed to decrease the computational cost of acoustic-wave forward modeling that can be applied to most finite difference methods. An important feature of the algorithm is the calculation, at each time step, of the pressure in only a moving subdomain which contains the grid points across which waves are passing. The computation is skipped at grid points at which the waves are negligibly small or non-existent. The novelty in this work comes from flexibility of the subdomain and its ability to closely follow the developing wavefield. To demonstrate the efficacy of the algorithm, it is applied to a standard finite difference scheme and validated against 2-D modeling results. The algorithm herein can play an important role in the reduction in computation time of seismic data analysis as the volumes of seismic data increase due to developments in data acquisition technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.