Abstract

In this paper, a new family of high-order finite difference schemes is proposed to solve the two-dimensional Poisson equation by implicit finite difference formulas of (2M+1) operator points. The implicit formulation is obtained from Taylor series expansion and wave plane theory analysis, and it is constructed from a few modifications to the standard finite difference schemes. The approximations achieve (2M+4)-order accuracy for the inner grid points and up to eighth-order accuracy for the boundary grid points. Using a Successive Over-Relaxation method, the high-order implicit schemes have faster convergence as M is increased, compensating the additional computation of more operator points. Thus, the proposed solver results in an attractive method, easy to implement, with higher order accuracy but nearly the same computation cost as those of explicit or compact formulation. In addition, particular case M=1 yields a new compact finite difference schemes of sixth-order of accuracy. Numerical experiments are presented to verify the feasibility of the proposed method and the high accuracy of these difference schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.