Abstract
Transparent thin films are critical industrial components widely used in advanced optics, microelectronics and materials science, among other relevant fields. The rapid and stable measurement of sub-micron industrial film thickness is of particular importance. In this study, a novel method based on the principles of infrared interference and laser profilometry is proposed to calculate the periodogram of the original spectrum and accurately extract the maximum frequency. In addition, a high-precision, compact and low-cost thin-film thickness measurement and calibration system is developed. This system achieves accurate measurement of single-layer film thickness and adapts to correct errors caused by slight tilt due to mechanical vibration or misalignment during film placement. Experimental data show that, compared to conventional infrared interference thickness measurement systems, the use of the proposed maximum frequency extraction algorithm improves measurement accuracy by approximately 90% and stability by approximately 70%. Furthermore, even when measuring the thickness of films with inclined components, the use of the constructed thin film thickness measurement and calibration system provides equivalent results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.