Abstract
An accurate discrimination on moisture status of oil-impregnated paper (OIP) bushings is crucial for the maintenance and replacement schedule of bushings. Based on frequency-domain spectroscopy (FDS) measurement and Dissado–Hill (DH) relaxation model, this article proposes a hybrid approach of hidden Markov model and gray wolf optimization (GWO-HMM) for MS estimation of bushings subjected to the ununiform moisture distribution and dynamic time-series modeling. First, simulation models of moisture diffusion and FDS of the OIP bushing were constructed using finite element modeling approach. Then, the GWO algorithm was employed to explore dielectric parameters influenced by moisture in the DH model. Then, the GWO-HMMs was adopted as a classification tool to discriminate the MS of the simulation and experimental data of the bushings. Classification results confirm that the average identification accuracies of the proposed method are 97.17% and 96.81% over these two datasets, which demonstrates the effectiveness of the proposed moisture estimate method for OIP bushings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.