Abstract

The transition from conventional landfill-centric waste management to resource-centric methodologies necessitates an enhanced comprehension of municipal solid waste (MSW) composition and its inherent value. Existing methodologies documented in the literature exhibit a lack of standardization, impending the formulation of a systematic engineering approach for MSW characterization and valuation. This study introduces a methodology specifically tailored to discern the composition of waste origination from urban households and evaluate its recyclability within the confines of a circular economy framework, Employing a volume-based measurement approach, aims to estimate the recycling value of waste materials. The study's outcomes contribute significantly to quantifying the potential recycling value that accrues to society. Furthermore, the validation of the proposed protocol elucidates the dynamic nature of recyclable value as it traverses the intricate pathways of the waste supply chain. This insight facilitates the formulation of commercial models grounded in circular economy principles for the effective management of household solid waste. Empirical findings reveal that the total recycling value fluctuates within the range of USD 3.39 and USD 5.76 per cubic meter of waste volume, contingent upon the specific waste composition at the experiment site. Additionally, the proposed methodology uncovers the nuanced variability in MSW composition and recycling value across diverse household collection patterns, identifying mixed plastic, paper, cardboard, mixed MSW, and clothing as primary constituents. The application of this methodology extends beyond mere quantification, providing a foundational framework for simulating the latent recycling value embedded within MSW samples. This, in turn, offers invaluable support to strategy developers, policymakers, and entrepreneurial ventures engaged in the sustainable management of household solid waste. In essence, this study establishes the groundwork for a comprehensive understanding of MSW composition and its recyclability, facilitating informed decision-making in the pursuit of a circular economy.•Novel methodology based on one cubic meter (1m3) composition analysis of Municipal Solid Waste (MSW).•A new method to evaluate the recycling value of Municipal Solid Waste.•A basis for business model development for the waste-to-resource conversion model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call