Abstract
A plastochron is defined as the time interval between two successive recurring events during the growth of plant shoots, such as leaf initiation. The plastochron index (PI) formulated by Erickson and Michelini (1957, American Journal of Botany 44: 297–305) provides a method for determining 1) morphological equivalence in a developmentally variable sample of shoots and 2) rates of development in microscopic tissues and organs, by expressing shoot age as a function of plastochron number. The PI assumes that homologous organs at successive nodes grow exponentially, at equal rates, and the plastochron remains constant. These three conditions are not met in many shoots that exhibit heteroblasty in their plastochron and the growth rate of organs at successive nodes. An alternative computational method for the PI is presented that uses two measurements taken at different times from the same organ during its exponential growth phase. The method does not assume that the PI is a linear function of time. Results of an analysis of cyme internode growth in two races of Arenaria uniflora (Caryophyllaceae) demonstrate that the method proposed is in good agreement with Erickson and Michelini's (1957) method when shoot growth is not markedly heteroblastic. The current method is also used to determine the nonlinear relation between PI and time in a race of A. uniflora that has heteroblastic cyme growth. The results generalize the PI for use in studies of heteroblasty, and for shoots where the relative plastochron rate cannot be directly determined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have