Abstract
The cumulative incidence function is the standard method for estimating the marginal probability of a given event in the presence of competing risks. One basic but important goal in the analysis of competing risk data is the comparison of these curves, for which limited literature exists. We proposed a new procedure that lets us not only test the equality of these curves but also group them if they are not equal. The proposed method allows determining the composition of the groups as well as an automatic selection of their number. Simulation studies show the good numerical behavior of the proposed methods for finite sample size. The applicability of the proposed method is illustrated using real data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.