Abstract
We propose parametric regression analysis of cumulative incidence function with competing risks data. A simple form of Gompertz distribution is used for the improper baseline subdistribution of the event of interest. Maximum likelihood inferences on regression parameters and associated cumulative incidence function are developed for parametric models, including a flexible generalized odds rate model. Estimation of the long-term proportion of patients with cause-specific events is straightforward in the parametric setting. Simple goodness-of-fit tests are discussed for evaluating a fixed odds rate assumption. The parametric regression methods are compared with an existing semiparametric regression analysis on a breast cancer data set where the cumulative incidence of recurrence is of interest. The results demonstrate that the likelihood-based parametric analyses for the cumulative incidence function are a practically useful alternative to the semiparametric analyses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.