Abstract

Abstract A data processing method to obtain high-quality data from an expendable conductivity–temperature–depth (XCTD) profiler is proposed. By adjusting the mismatch of the response time of the temperature and conductivity sensors, systematic error (on the order of −0.05) in XCTD salinity data can be eliminated from regions having a strong vertical temperature gradient (>0.2°C m−1), such as the main thermocline of the nearshore side of the Kuroshio axis and the seasonal thermocline of the subarctic North Pacific. The systematic errors in XCTD depth and temperature data from two cruises were evaluated by comparing the CTD and XCTD data taken simultaneously during each cruise. The XCTD depths were in good agreement with the CTD depths from one cruise, but depth-dependent depth errors from the other cruise were found. The cause of the depth error is unknown but may have occurred because the terminal velocity for the XCTD probes was much less (−0.0428 m s−1) than that provided by the manufacturer for the later cruise. The results suggest that XCTD and expendable bathythermograph (XBT) observations may have a similar depth error because XBT and XCTD do not have pressure sensors, and therefore depth is inferred from the fall rate of the probe. Systematic positive biases (0.018°C on average) were found in XCTD temperature data. The viscous heating effect may contribute to the thermal bias because flow past the XCTD temperature probe is relatively fast (>3 m s−1). Evaluation of XBT/XCTD data by using simultaneous CTD observations data is valuable for validation of statistical corrections of the global XBT/XCTD dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.