Abstract

An approach for the crystallographic mapping of two-phase alloys on the nanoscale using a combination of scanned precession electron diffraction and open-source python libraries is introduced in this paper. This method is demonstrated using the example of a two-phaseα/β titanium alloy. The data were recorded using a direct electron detector to collect the patterns, and recently developed algorithms to perform automated indexing and analyse the crystallography from the results. Very high-quality mapping is achieved at a 3nm step size. The results show the expected Burgers orientation relationships between the α laths and β matrix, as well as the expected misorientations betweenα laths. A minor issue was found that one area was affected by 180° ambiguities in indexing occur due to this area being aligned too close to a zone axis of the α with twofold projection symmetry (not present in 3D) in the zero-order Laue Zone, and this should be avoided in data acquisition in the future. Nevertheless, this study demonstrates a good workflow for the analysis of nanocrystalline two- or multi-phase materials, which will be of widespread use in analysing two-phase titanium and other systems and how they evolve as a function of thermomechanical treatments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call