Abstract
AbstractWe present meteorology and snow observation data collected at sites in the southwestern Colorado Rocky Mountains (USA) over three consecutive water years with different amounts of snow water equivalent (SWE) accumulation: A year with above average SWE (2019), a year with average SWE (2020), and a year with below average SWE (2021). This data set is distinguished by its emphasis on paired open‐forest sites in a continental snow climate. Approximately once a month during February–May, we collected data from 15 to 20 snow pits and took 8 to 19 snow depth transects. Our sampling sites were in open and adjacent forested areas at 3,100 m and in a lower elevation aspen (3,035 m) and higher elevation conifer stand (3,395 m). In total, we recorded 270 individual snow pit density and temperature profiles and over 4,000 snow depth measurements. These data are complimented by continuous meteorological measurements from two weather stations: One in the open and one in the adjacent forest. Meteorology data—including incoming shortwave and longwave radiation, outgoing shortwave radiation, relative humidity, wind speed, snow depth, and air and infrared surface temperature—were quality controlled and the forcing data were gap‐filled. These data are available to download from Bonner, Smyth, et al. (2022) at https://doi.org/10.5281/zenodo.6618553, at three levels of processing, including a level with downscaled, adjusted precipitation based on data assimilation using observed snow depth and a process‐based snow model. We demonstrate the utility of these data with a modeling experiment that explores open‐forest differences and identifies opportunities for improvements in model representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.