Abstract

A molecular switch based on the metastable radical anion derived from a substituted heteroaryl quinone is described. Pyrrolil quinone thiocyanate (PQ 5) showed an interaction with the fluoride anion that was visible to the naked eye and quantified by UV/vis and 1H and 13C NMR. The metastable quinoid species formed by the interaction with F- ("ON" state) showed a molecular switching effect autocontrolled by the presence of ascorbate ("OFF" state) and back to the "ON" state by an autooxidation process, measured by visible and UV/vis spectroscopy. Due to its out-of-equilibrium properties and the exchange of matter and energy, a dissipative structural behaviour is proposed. Considering its similarity to the mechanism of coenzyme Q in oxidative phosphophorylation, PQ 5 was evaluated on Saccharomyces cerevisiae mitochondrial function for inhibition of complexes II, III and IV, reactive oxygen species (ROS) production, catalase activity and lipid peroxidation. The results showed that PQ 5 inhibited complex III activity as well as the activity of all electron transport chain (ETC) complexes. In addition, PQ 5 reduced ROS production and catalase activity in yeast. The results suggest that PQ 5 may have potential applications as a new microbicidal compound by inducing ETC dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call